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Optical Solitons in a Monomode Fiber 

Yuji Kodama 1'2 

We discuss the propagation of optical solitons in a monomode fiber as a model 
of long-distance-high-bit-rate transmission system. We give several new results 
which did not appear in our previous papers on this subject, such as (1) a 
derivation of the perturbed nonlinear Schr6dinger equation from the Maxwell 
equation, (2) on the integrahility of the perturbed nonlinear Schr6dinger 
equation, (3) a discussion of the soliton as a stable fixed point of certain infinite- 
dimensional map generated by a transmission system with periodic excitations. 

KEY WORDS: Solitons; nonlinear Schr6dinger equation; perturbation 
method; reshaping. 

1. I N T R O D U C T I O N  

In an optical transmission system using linear pulses, the bit rate of trans- 
mission (i.e., channel capacity of an optical fiber) is limited by the disper- 
sion character of the fiber material. The dispersion is the deterministic fac- 
tor in deciding the rate of pulse broadening. To overcome this limitation, 
the nonlinear change of dielectric (the so-called Kerr effect) of the fiber has 
been used to compensate for the dispersion effect/1) When the frequency 
shift due to the Kerr effect is balanced with that due to the dispersion, the 
optical pulse may tend to form a stable nonlinear pulse (called optical 
soliton). The optical solitons are now considered to have a potential 
application to a high-bit-rate transmission system as shown in Ref. 2. For 
the solitons, the fiber loss is the only factor that contributes to the 
deterioration of the pulse quality by broadening the pulse width, t2) In a 
series of papers ~3-5~ we have shown that the optical solitons deformed by 
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the fiber loss can be reshaped to a narrower and higher pulse during the 
course of transmission through a fiber. The idea for the reshaping of 
solitons is based upon a unique property of solitons that the dispersion is 
balanced by the nonlinear effect. We proposed several models of long-dis- 
tance transmission system, and showed numerically that the soliton can 
propagate free of distortions through a fiber with periodic excitation at 
appropriate distances. 

In this paper, we show several new results (which did not appear in 
the previous papers ~ concerning the optical solitons propagating 
through a monomode fiber. The paper consists of three parts: 

First, starting from the Maxwell equation for the electric field in a 
fiber with an inhomogeneous dielectric constant, we derive the nonlinear 
Schr6dinger (NLS) equation with higher-order terms (as the perturbation 
terms) in an appropriate asymptotic sense. Although there have been 
several publications dealing with this problem, (~'6) most of the papers 
appear to be inconsistent in several points, for example, (1) the TE or TM 
mode has been assumed for the electric or magnetic field (this is not valid 
when the dielectric constant is inhomogeneous), (2) the ordering of scales 
in the variables (field variable and coordinates) is not clear. The method 
used in this section is based on the asymptotic perturbation technique 
developed by Taniuti et al. (the so-called reductive perturbation 
method(7~), and gives a consistent scheme for the derivation of the NLS 
equation and the higher-order corrections. The main equation derived here 
is given by the following form: 

Oq 1 02q 

g3q + 2 ~q 2Oq*) = ei fl~ - ~  f12 Iq[ ~--~+ fl3q - ~ j  - iFq (1.1) 

which we call the perturbed nonlinear Schr6dinger (PNLS) equation (see 
below for the meaning of the variables in the equation). 

Second, we discuss several properties of the equation (1.1), and its 
solutions (especially, soliton), and how the perturbations on the right hand 
side of (1.1) affect the integrability of the NLS equation. 

Finally, we consider a feasibility of a long-distance-high-bit-rate 
optical transmission system by use of solitons. In order to establish such a 
system, we discuss a possibility that the soliton can be considered as a 
stable fixed point of an infinite-dimensional map corresponding to a trans- 
mission system having periodic excitations. 
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2. D E R I V A T I O N  OF T H E  PNLS E Q U A T I O N  (1 .1 )  

In this section, by introducing an appropriate scale of coordinates 
based on the physical setting, we reduce, the Maxwell equation (three- 
dimensional vector equations) into the PNLS equation (one-dimensional 
scalar equation) describing the optical pulse propagating through a cylin- 
drical fiber. 

The electric field E in an optical fiber with the dielectric constant e 
satisfies the Maxwell equation, 

1 0 2 
V x V x E -  c2 c3t7 D (2.1) 

where c is the speed of light, and the displacement D = E �9 E may be given 
in the following form: 

f 
t 

(E * E)( t )= dt 1 e(~ tl) E(tl) 
oo 

;, f' + dtl dr2 d t 3 c ( 2 ) ( t - t l , t - t 2 ,  t - t 3 )  
O:3 - - 0 0  O0 

x [E(t l ) 'E(t2)]  E(t3) 

+ higher nonlinear terms (2.2) 

Here the second term indicates the Kerr effect, and the coefficients e (~ e (2) 
depend also on the spatial coordinates implying the inhomogenity in 
dielectric constant. By virtue of the formula of the vector calculus, Eq. (2.1) 
can be written in the form 

2 l 0 2 
V E - 7 ~ T D = V ( V . E  ) (2.3) 

It should be noted that V" E in (2.3) is not zero, since V" D = 0 (constraint 
for D in Maxwell's equation) implies e .  (V. E ) =  - (VE.) .  E ~0. Namely, 
the electric field is not TE mode, and (2.3) cannot be reduced simply to a 
scalar equation (e.g., by assuming E =Vgtxe ,  e a unit vector in the direc- 
tion of propagation). However as far as the linear problem is concerned, 
V. E can be ignored, since in the practical case the order of Ve(~V.  E/lEt) 
is small, O(Ve)_ 10 -3 for monomode fibers. (8) [Note that the order of 
nonlinearity considered here is much smaller than O(VE), that is, the right- 
hand side of (2.3) cannot be ignored when the nonlinear problem is con- 
sidered. ] 
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For our purpose to reduce (2.3) in the sense of asymptotic pertur- 
bation method, it is convenient to write (2.3) in the following matrix form: 

LE = 0 (2.4) 

where E expresses a column vector, i.e., E = '(Ex, Ey, Ez), and in the cylin- 
drical coordinates with the z axis as the axial direction of the fiber, the 
matrix L consisting of the three parts L = L a + Lb -- Lc is defined by 

V 1 2 {? ) 
• ~2 r2 6~ 0 0 

L~= 7 V 2 r2 0 

o v~ 

02 10 ~ (1 0 O} 
Lb=(.fzz2 c2&2e*) 0 1 0 

0 0 1 

I ~r r Or 8r r ~0 Or& ) | 1 8 2 1 ~2 1 0 2 
L c = I -  ~ - f f~  r r 2 002 r 000z 

1 02 1 02 82 
\ 7 ~ r r ~Oc~z &---~ 

(2.5a) 

(2.5b) 

(2.5c) 

Note that these matrices imply 

1 ~ 0 1 Oz\  
<E=V E= 77rr5+7 ) 

and 
L~E=V(V.E) 

E 

We consider the electric field as a nearly monochromatic wave propagating 
along the z axes with the wave number kl and angular frequency o91, that 
is, the field E is assumed to be in the expansion form, 

E(r, 0, z, t) = ~, El(r, 0, ~, z; e) exp[i(kzz-  o&t)] (2.6) 
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with E z= E* (complex conjugate), where k~= lk~, ~o~= lco~ and the sum- 
mation is taken over all harmonics generated by the nonlinearity due to the 
Kerr effect, and El(r, 0, ~, z; e) is the envelope of lth harmonic changing 
slowly in z and t. Here the slow variables ~ and z are defined by 

(, ~2z, T= e  - (2.7) 

where the small parameter e(le] ~ 1) expresses the order of the nonlinearity 
(i.e., the order of the electric field) and Vg is the group velocity of the wave 
given below. Since the radius of the fiber has the same order as the 
wavelength (2g/k1), the scale for the transverse coordinates (r, 0) is of 
order 1. In this scale of the coordinates (2.7), we are looking at a behavior 
of the field in the balance between the nonlinearity and the dispersion 
which results in the forming of optical solitons confined in the transverse 
direction. With (2.6) and (2.7), the displacement D = e .  E= 

Dt e x p [ i ( k t z - c o d ) ]  is given by 

G~F l 82 1 ~(0) ~2EI 
Dl(r ,O,~ ,z ;~)=El~176 2 ~ ~z 2 

__ S3Zz(O) ~3EI . (2) 
3v w --~-~3 + Ee111213(Ell" El~) El3]11+12+13=l 

~-i[-E( 2 ) (~EI ' ,  El2) E A-1~(2)(E/I , (~E/'2x~ C 111213~ O"C 13" hi2t3 C~Z J E13 

+ e"(2)'hl2tr h" E~2) 8E13ql + -.. (2.8) 
- -&z j,~ + ,2 + l, = ,  

where e} ~ is the Fourier coefficient g(~ of e(~ at s = cot, i.e., e~ ~ = 
g(~ and ~l~176 ..... and e~/~ is the Fourier coefficient 
g(2>(/2~, f22, s of e(2)(t~, t2, t3) at ~ = c%, O: = c%, 03 = cot 3, and 
6(2) _ (2) 111213- 0el11213/0~0ll and so on. 

We now assume that El(r, O, r r; e) can be expanded in terms of e, 

Et(r, 0, ~, r; ~) = ~ e"E~")(r, 0, (, z) (2.9) 
n=l 

Then, from (2.4), (2.6), (2.7), and (2.8) we have, at order e, 

L t E ~ ) = 0  (2.10) 
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where Lt is L with the replacements O/Oz = ikl, #/Ot = -io)t, e ,  = el ~ Note 
that the operator L~ is self-adjoint, Lt + = L j, in the sense of the following 
inner product: 

(u, v)=I,~ u + v  a s  (2.11) 

where dS = rdrdO, D is the cross section of the fiber, and A + = the adjoint 
of A = ( A o )  + =(A*).  In the equation (2.10), we consider the case (of 
monomode fiber) in which there is only one bound state with the eigen- 
value k~ (i.e., l =  ___1) and the eigenfunction U = U(r, 0) (called the mode 
function describing the confinement of the pulse in the transverse direc- 
tion), that is, the solution to (2.10) can be written in 

Ell)(r, 0, 4, z ) =  ({(~q~'~'" 
U(r, 0), 

~0, 
f o r / =  1 

(2.12) 
for l #  +1 

Here the coefficient q]l)(~, "C) with qH] = q]l)* is a complex scalar function 
satisfying certain equations given in the higher-order equation of (2.4). 
From the equation L 1 U = - 0  , the inner product (U, L 1 U ) = 0  gives the 
linear dispersion relation kl = k~(O)l), 

2 

/~2--c~ no2U)+(U, L0 U) 
' ~ 1 -  C2 ~ v ,  

(2.13) 

where no = (el~ m is the index of refraction, and we have assumed the nor- 
malization for U by U 2 + Uy-l.2_ 

At order e2, we have 

LtE}2)=i ~ clLl+ 1 ~3EI 1) 
I 

(2.14) 

from which we obtain El 2) = 0  if l #  +1. In the case l =  1, it is required that 
the inhomogeneous equation (2.14) satisfies the compatibility (or 
integrability) condition, 

(u, L1E~ ~)) = 0 (2.15) 

This gives the group velocity vg in terms of the linear dispersion 
relation (2.13), 

1 c3k 1 
. . . .  (2.16) 
vg ~ 1  
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and (2.14) for l =  1 becomes 

_ _  _ _  0L1 Oq~') L 1 E~ 2) = --i 63L1 OE~)- i - -  -- U (2.17) 
0CO 1 OT 8(-01 OT 

From (2.10) for l =  1, one can find the solution of (2.17) in the form 

E~ 2) = i ~?q~l) c?U I- q~2)U (2.18) 
O'C O(D 1 

where q]2)= q{2)(r z) with q ~  = q]2)* is a scalar function to be determined 
in the higher-order equation. 

At order e 3, we have 

~=0,  if l-r -t-1, ___3 

9c~ U, if l = 3  "~- --7 3 "1l ~, 

.3L 10E~ 2) 1 C;32LI (32E] 1) 
= - l - -  t- 

Ocol & 2 &o~ OT 2 

LIE~ 3) (Oq~l) 1 a2kl ~2q]1)'] 

+ \ i  & 20o~ 2 &2J  

_ iq]1)12 q~l)Wlc~21 (U" U) U, if l =  1 (2.19) 

= e(2) tl - +1). (Note that e~ 2) is a positive real num- where e~ 2) ~/l+t2+t3=t m2t3~-i- 
ber for the Kerr effect.) From (2.19), one can obtain the solutions, E~ 3) = 0 
for l ~  _+1 or _+3, and since L3 does not have the eigenmode (i.e., ker 
L3 = 0), 

E(331- 9c~ n(1)3L 1FE(32)(U'U) U] 
02 "/1 3 (2.20) 

which is a harmonic generated by the nonlinearity. For l =  1, we again 
require the compatibility condition 

(U, LI  E~ 3)) = 0 (2.21) 
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from which we obtain the NLS equation for q~l)(~, ,~), 

.9q~ i) 1 92kl t~2q~ 1) bl)1q~1)12 q~l)=0 (2.22) 
t 9~ 2 9(02 9T 2 

where v is a positive real number given by 

0) 2 
v = ~ ( U , e ~ 2 ) { U  U } U )  (2.23) 

Hence, the optical soliton can propagate through the fiber when 
k l  = 9 2 k j 9 0 )  2 < 0 (i.e., the abnormal dispersion) (~). Here, it is worth noting 
that the explicit form (2.18) for fi~2) does not need in the calculation of the 
compatibility condition (2.21), and that (2.21) can be calculated directly 
from the equations for E] 1) and fi~2), i.e., (2.10) and (2.17). 

In order to see the effects of the higher-order terms, one needs to find 
the equation for q]2) in (2.18). For this purpose, we have, at order e 4, the 
equation LI E~ 4) for l = 1, 

9L1 3E~ 3) 1 92L1 ~2E~2) i 93L1 93E~ 1) 
L~ E~ 4)=  - i - -  J- + 

9(D 1 9T 2 00)12 9Z 2 6 90) 3 &3 

p j j  
( 9E~ 2) 1 92kl ~2E~2) i 93kl 93E~1)~ 

x i 9~ 2&o 2 &2 690)~ &St3 ] 

I 9 ( (D2FI2~L(  9['7~ 1, i 92k 9217~1)~ 
+ i  ~ L~ c2 j j &  i 9r 20o)2 ~ J 

(O 2 I-6(2) . 
7 k /1,2,, 2 (ES;)" El y)) EI~I i+j+k=4 

-1-i ~-- 9'521~13 ~ (E (1)" E} 1)) E51)] (2.24) 
i=l 9(Dl i ~g,i k li 11+12+13=1 

where 9[(el " e J') = (gel?'/e  .e 2 eSJ' and so on. Using (2.10), 
(2.17), (2.19) and the remark below (2.23) [i.e., without solving (2.19) for 
E~3)], one can calculate the compatibility condition for (2.24), i.e., 
(U, L1E~ 4)) = O. The resulting equation for q~2) from the compatibility con- 
dition is 

�9 __gq] 2) 1 92kl 92q] a) t-2v ~(~) 2 ,~(2)'t- Pql(1)2ql(2)* 
t 9~ 2 90) 2 9./.2 "/1 '11 

93q~ i) ~a(1) 3q]l)* 
i,,,)12 ~ a  + i~3q~1) (2.25) = i~ 1 - - ~ 3  ~- i0% ul & & 



Optical Solitons in a Monomode Fiber 605 

where ai( i= i, 2, 3) are real constants given by 

] c33k l  

~1 = 6 0co~ (2.26a) 

(n~(U,{e~2) & [~ -~ I (U .U) ]+Et2 ) (U .U)}U)  (2.26b) 

with e~ 2)-= et] )_ 1 + e ~ l J  ' -(2) and e ~  Through + e l  11 ---- ~ ' ~ ) l l l  + ~,~2) 11 "4- ~(2)  -- ~ l l  -- i ' 
the paper, we study an equation for a function q(T, Z) in the form (1.1), 
which is equivalent to the equation combined (2.22) and (2.25) with the 
normalizations, T =  ~(-2~]~,/kl)-1/2, z = ~(k1/27t), ~ = x/-v(q~ 1) + ~q~2)), 
~1 = ~(2zc/kl)( 7.2~]~/kl) -3/2, ~2 = ~2(2~/vk~)(-2kJk~) -~/z, f13 = 
~3(2g/vk~ ) ( -  2~zkJk~)-1/2 and F =  0. The fiber loss is given by an imaginary 
part of the dielectric constant e~ ~ and may appear as the term in (1.1)J 2) 
In the practical cases, the order of F can be assumed to be 5, F =  ~Fo and 
O(ro) ~ 1. 

3. EFFECTS OF P E R T U R B A T I O N S  

In this section, we first briefly summarize the facts of the NLS 
equation as a completely integrable system, and then study the effects of 
perturbations based on the PNLS equation derived in the previous section. 

The NLS equation considered here is given by the normalized form 
(1.1) with ~ = F = 0, i.e., 

�9 c3q 1 ~2q 
l - ~  + -~ -ff-~ + l q l Z q = O (3.l) 

For a certain class of functions qo(T)= q(T, 0), the initial conditions, [e.g., 
Iqo(T)l approaches to zero sufficiently rapidly as IT I goes to infinity], one 
can solve the initial value problem of (3.1) by means of the method of 
inverse scattering transform (IST). The general response q(T, Z) calculated 
by the IST method consists of N-number of solitons (N-soliton solution) 
and radiations (linearlike dispersive wave) which die off asymptotically as 
Z ~  oo. ~9) The one-soliton solution in the general form is given by 

q ( T , Z ) ~ - ~ l s e c h q ( T + K Z - O o ) e x p [ - i ~ c T + ~ ( q 2 - ~ 2 ) Z - i a o ]  (3.2) 
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where r/, x, 0o, and a0 are arbitrary constants determined from the initial 
condition. 19) As mentioned before, such a solution appears due to the 
balance of the dispersion effect and the nonlinear response due to the Kerr 
effect. This balance can be also seen in (3.2) as the relation between the 
amplitude ~/and the pulsewidth ~ 1/q. One of the important properties of 
the soliton for the communication systems is its stability. The soliton is 
known to be a stable pulse against the noise and some perturbations. ~1) 
This is a consequence of the fact that the NLS equation has an infinite 
number of conserved quantities. In this sense, we often say that the NSL 
equation is completely integrable. The several conserved quantities are 
given by 

f 
o o  

~o = Iql 2 dT 
- - o o  

/L2 = q - ~ d r  

foo ( ~q 2 [ql4) dT 

(energy) 

(energy flux) (3.3) 

(Hamiltonian) 

these quantities are 9f0=2r/, In terms of the one-soliton solution, 
~1 = -2xr/, Yf2 = 2K2r/- 2r/3/3. 

We now discuss a solution of the PNLS equation (1.1). Here we 
employ the perturbation method developed in Ref. 10 to study the 
behavior of the soliton under the influence of the perturbations in (1.1). At 
the end of this section, we briefly note a recent result on the integrability of 
the PNLS equation without the loss term (i.e., F =  0). 

The basic idea of the perturbation method in Ref. 10 is to assume the 
solution of (1.1) to be the following form (called a quasistationary 
solution): 

q(T,Z)=dt(O, Z1;e)exp[--#c(O--Oo)+i(a--ao) ] (3.4) 

where Z 1 is a slow variable defined by Z1 =eZ,  and O, a are the fast 

(3.5) 

variables satisfying 

~0 00 
OT 1, OZ ~ 

~a ~a 1 

Because of the perturbations, the four parameters of the soliton (3.2) 
{t/, x, 00, ao} become the functions of ZI. Namely, assuming the 
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quasistationarity (3.4), we expect that the solution of the PNLS equation 
evolves adiabatically. Substituting (3.4) into (1.1), we have an equation 
for 2, 

5 ~2__O0 
+ 1212 2 -  ~ ~22 = eF(2) ( 3 . 6 )  2 802 z 

where the right-hand side is given by 

F(2)= - t ~ - ~ -  ~ [(0--00) K''~-O'O]-~fll/g3--fl2 K 1212+iFo 2 

2 d2 82* 
- -  f 1 3 K 2 2 2 * - - i ( B f l l g 2 - - f 1 2  121 )ffo+if1322 80 

822 032 (3.7) 
+ 3/~1 x ~ + i~, ~0 3 

Let us assume that 2 can be expanded in terms of e, 

2(0, Z l  ;/~) = 2(0)(0, Z 1 ) -~ 82(1)(0, Z l ) -1- . . .  (3.8) 

where the first term 2(0)(0, Z1) is given by the soliton form (3.2), 

2(0)(0, Z l )  =/7 sech t/(0 - 0o) (3.9) 

From (3.6) and (3.8), and at order e, setting 2(~)= ~o + i0 where (p and 0 
are real functions, we have 

/1 8 2 +3~(o~2_1 2~ 
LR~~ 't 2't jq)=ReF(O (~ 

L /1 82 I0 = ~ ~-0~ -t- ~(0)2 -- 1 r/2) 0 = ImF(O(~ 
(3.10) 

where ReF(0 (~ and ImF(0 (~ are the real and the imaginary parts of 
F(2(~ Noticing that the operators LR and L~ in (3.10) are self-adjoint, 
and LR(8O(~ L~0(~ 0, the compatibility conditions for (3.10) are 
given by 

80(o) 
f o~ ReF(0 (~ dO = 0 
_~ ~0 

fo~ O(~ (~ dO = 0 
- - c o  

(3.11) 
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The conditions (3.11) lead to the equations for t /and ~c, 

d~ d~c 
- -  = - 2 r 0 n ,  - 0 ( 3 . 1 2 )  
dZ1 dZl 

Thus the amplitude of soliton decays as exp( -2FZ) ,  but the velocity 
remains constant. Using these results, one can find the particular solutions 
of (3.10), 

1 d X2)] ~(0) 
q~P = ~ [d-Z~ (~cO~ %) + fl' ~c(3tl2- J 

[ 1 ]0(o ) + ~ -3/~, +~ (~2-/L) 
(3.13) 

[dOo - 3~c2)1 (0 - 0o) 0 (~ 

+ 3 /~ -~  (/~+ B~) +ro(O-Oo)20 (~ 

Note that (3.13) are valid for the region 10- 0ol < O(F-1/2) only, because 
of the nonuniformity due to the fiber loss F. Whereas the terms 00(~ 
and ( 0 - 0 o ) 0  (~ do not cause the perturbation scheme to be nonuniform 
(even these look so), since these terms can be absorbed into the leading 
order solution 0(o) by shifting r/ and ~c, respectively. To determine the 
parameters 0o and %, one needs to consider the initial value problem for 
(1.1). The PNLS equation (1.1) derives the following equations for the con- 
served quantities of the NLS equation, (3.3): 

d 
~-~ ~ o  = - 2 I ~ o  

(3.14) 
d 

~ =  - 2F ~  -6e2fl,f13 J -ST [q] 
(re ~q 2 2 

dT 
--dZ -~-ff-T 

where 
~ ~ ~f13 f-~v Iq[4 d T  (3.15) 

Using (3.8) and (3.12), at order e, the equations (3.14) with the initial pulse 
as the soliton solution (3.2) give the conditions 

f~ q~O (~ dO=O 
(3.16) 

~o ~0(o~ 
I_ oo r - - S O -  dO = P~(,7~ - r  tl 
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where r/o = r/(0). From (3.13), we have the equations for 0o and ao, 

dOo=(r/2+3~ca)fl~ 1 (2 ) dZl __ ~ T12f12 ..[_ r/2 __ r/2 f13 

d~176 = 2(~c2 - r/Z) ~cfi, 2 ( ~ )  dZ1 --  3 Ky/2fl2 --  r/2 -t"//2 /s 

(3.17) 

For a simple case as an important example, the solution with the initial 
conditions r/= r/o, x = 0o = ao = 0 in (3.2) is given by 

q 

tanh r/0J sech r/0e io r/ 

and O<Z<O(e -~) (3.18) 

q( T, Z) = q(~ T, Z) + eq('~( T, Z) + O(e 2) 

= r/sech r/Oe ia 

1 1 f13) + eir/IffOO~2--(3fll---~fl2-- ~ 

+ O(~2), for IOl < O(F -~/2) 

where 

r/l( 1 2 ) 4rz) 8r/2z 
O -~- T -- ~ o  fl , -- S f12 -~ S f13 ( 1 - - C  - -  

(3.19) 

8r(1-e-4rz)+ 2flx-S&+Sf13 -r/2 0 

From (3.18) and (3.19), one can see that the higher-order dispersion and 
nonlinearity characterized fli(i= 1, 2, 3) modify the velocity, and deform 
the shape of soliton, but only by order e for all Z ~  (e-l).  It should be 
noted that the velocity modified by these perturbations depends on the 
soliton parameter r/, and therefore the bound state soliton (where each of 
the solitons has the different r/but the same ~c) decays into a series of mov- 
ing solitons. The main destruction of the soliton shape is caused by the 
fiber loss, which gives the limitation of the bit rate of the soliton trans- 
mission (see Ref. 2 for details). In the next section, based upon a unique 
property of solitons that the dispersion which depends on the pulse width 
is balanced by the nonlinearity, we discuss the reshaping of the soliton 
deformed by the loss. 

Before ending this section, we note some remarks on the case of no 
fiber loss, F =  0. In this case, as mentioned above, the soliton is stable in 
the sense that the distortion of the shape remains order e even after the dis- 
tance of propagation Z~O(e -~) (unlike the linear dispersive pulse). It is 
also important and interesting to notice that the solution (3.18) with F =  0 
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gives a uniform solution in T of the PNLS equation (1.1), i.e., the solution 
is valid for all T, and the equation q(O) [soliton part in (3.18)] satisfies the 
following equation (instead of the NLS equation): 

�9 ~3Q . 1 ~33Q . /03Q z 0Q'~ 
t - ~ + - ~ - ~ +  IQ[2 Q=~i f l l  ~--~TS+ 6 LQ[ -ff-~j + o(e  2) (3.20) 

The equation (3.20) is sometimes called the higher-order (or the hierarchy 
of) nonlinear Schr6dinger (HNLS) equation which is also completely 
integrable by means of the IST method with the same eigenvalue problem 
for the NLS equation, and its conserved quantities are the same as those of 
the NLS equation. The general form of one-soliton solution for (3.20) is 
given by 

Q(T, Z) = t/sech t / I T +  ~cZ + e/~l(q 2 - 3~: 2) Z - 00] 

x e x p [ - i ~ c T + ~ ( t l 2 - t c a ) Z + i ~ f l l ~ c ( ~ c 2 - 3 t l 2 ) Z - i a o l  

(3.21) 

With the above observation, one may expect that the PNLS equation (1.1) 
with F = 0  can be approximated by a completely integrable system (3.20) 
up to order e.(-) In fact, there is a map ~b transforming (3.20) into (1.1) 
with F = 0, such that 

1 1/?3) ~?Q 
q = qb ( Q ) = Q - e i ( 3 fl l - -2 fi 2 + 2 . " ~  

-- ei(6fl~ --fi2) Q IQI 2 dT' + O(e 2) (3.22) 
- - o O  

Thus, up to order e, the solution of (1.1) with F = 0  can be expressed in 
terms of that of (3.20) which can be solved exactly (i.e., the PNLS equation 
without the loss may be said to be integrable up to order e). It can be also 
shown that the map (3.22) is a canonical transformation with an 
appropriate choice of Hamiltonian structure for the PNLS equation. This 
situation is similar to that of finite-dimensional Hamiltonian system with 
perturbations consisting of homogeneous polynomials (theory of the 
Birkhoff normal form expansion). (See Ref. 12 for more discussion on this 
subject. ) 

4. R E S H A P I N G  OF T H E  S O L I T O N S  

Here we show that the solitons deformed by the fiber loss can be 
reshaped by periodic excitations in the course of transmission through a 
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fiber. From the discussion in the previous section, we consider the follow- 
ing set of equations for a transmission system with periodic excitations: 

.OQ 1 ~2Q 
-d-d + + l Q l Q 

[ 03Q Q[ --d-f) - iFQ, : ~ifll ~ - ' ~  + 61 ~ 00 for Z t < Z < Z t +  1 (4.1) 

and the relation of the excitations, 

Q(T, Z ,+ O) = Q( T, Z , -  O) + G(T, Z , -  O) (4.2) 

where Z i = I A Z  ( l=0,  1, 2,..., N) are the positions of the devices for 
excitations described by the functions Gt(T)=G(T, Z t -O) ,  and AZ the 
device spacing. The effect of the excitation Gz(T) to the soliton (i.e., the 
change of the soliton parameters) can be analyzed by use of the eigenvalue 
problem in the IST method. [Recall that (4.1) is integrable if F =  0.] The 
soliton parameters th = t / (Z t -  0) and ~c~ = ~c(Zt- 0) in (3.21) for 
Qi(T) = Q(T, Z l -  0) are given by the eigenvalue ~l = ~ (Z / -  0) = (~cl + itlt)/2 
in the eigenvalue problem, (9) 

i - ~  gt 1 - iQt ~2 = ~t ~[11 

(4.3) 

We compute the new eigenvalue ff(Zt+0) from (4.3) with Q(T, Zz+O) 
given by (4.2) in the sense of perturbation for small GI(T) (the order of Gt 
is the same order as the loss rate of the amplitude). Then the variation 
AQ= ~(Zz + 0 ) -  ~ (Z t -0 )  can be calculated by the formula obtained from 
(4.3), 

(4.4) 

where the eigenfunctions gt,=g~i(T, Z z - 0  ) ( i =1 ,2 )  are those of the 
bound state solution of (4.3). If Q~(T) is a one-soliton solution given in the 
form 

Qt(T) = ~h sech q t ( T -  01) exp(io't) (4.5) 
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then the eigenfunctions ~it are given by 

1 i 

~P2,(T)=(2) l /2secht l , (T-Oz,  e x p ( ~ t l , T - ~ a , )  

(4.6) 

[Note that (4.5) agrees with the form (3.21) with ~:=0.] From (4.1) and 
(4.2), one can define an infinite-dimensional map for the function Qt(T), 
l = 0, 1, 2 ..... that is, 

Q,+ I( T) = F ~z[Q~( T) + G~(T)] (4.7) 

where F z [ ' ]  is the solution of the initial value problem for (4.1), i.e., 
Q(T, Z) = Fz[Q(T,  0)] (the one-parameter group of diffeomorphism). The 
complete analysis of this map is practically impossible, because of its 
infinite-dimensional aspect [even (4.1) can be solved by the IST method]. 
However, if the functions Qt(T) are assumed to be the solitons having the 
form (4.5), then the map (4.7) can be reduced into a finite-dimensional map 
for the soliton parameters {r/~, 0z, az} in (4.5). [This assumption may not 
be valid for long distance, but it can be a good approximation for the field 
QI(T) in the distances Z s  -1) where the soliton part dominates the 
radiations produced by the loss and the excitations. (4)] From (3.12), (3.17), 
and (4.4), the finite-dimensional map can be expressed by 

rl~+ ~ = rl(Z~ + O) e-2vAz = ( r l l  .jr_ Arlt ) e - 2/'az 

~+ * (e 4r~z - 1 ) 0,+, = 0 , -  ell, y (4.8) 

2 

. tll+ 1 (e4raz_ 1) (rood 27~) 0"l + 1 ~ 0"1-1- --- ~ 

where dr/t is the imaginary part' of 2A(z in (4.4), and a function of 0t and az. 
Here we have assumed that A~ is pure imaginary, i.e., zl(~= idqj2, to be 
consistent with the assumption (4.5) [this can be achieved by taking G~(T) 
to be symmetric in T -  0t]. In the remaining part of this section, we give 
two examples of such finite-dimensional maps corresponding to the trans- 
mission systems with periodic excitations. 

As the first example, we consider an amplification with nonlinear sup- 
pression given by the following form of G~: 

Gz(T) = e(1 - 6 IQz(T)I 2) Q,(T) (4.9) 
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where ~ and ~ ( 4  1) are linear and nonlinear gains, and both positive real 
constants. From (4.4) and (4.9), we obtain 

At/l= 2~ (1 - -2  8t/~) t/t (4.10) 

Consequently in this case, we have a one-dimensional map for t/t given by 

t/~+l e 2 r ~ z [ l + 2 ~ ( 1 - ~ S t / 2 ) ]  = r/t (4.11) 

This kind of map (e.g., quadratic map) has been studied extensively as a 
model of turbulence (chaos), and shown to have the period-doubling 
bifurcations corresponding to various values of control parameters 
and 6. In the case of (4.11), if ~ satisfies an inequality, 
a> [exp(2FAZ)- 1]/2.~FAZ, then there is a fixed point ~/, such that 

I exp(2FAZ)] 3(~- -FAZ)  
t/2, = 1 1 +2~  / 6(1 +2~)  (4.12) 

One can also .show that the fixed point (4.12) is stable for certain regions of 
and 6, e.g., as a practical case, ~ =  [exp(2FAZ)-1 +28/3] /2  and suf- 

ficiently small 6 (note that the choice of a gives t/, = 1). Thus the solitons 
can be reshaped into a unique soliton whose amplitude is t/,. It should be 
noted that this unification of solitons is necessary to keep each soliton 
separated, since the higher-order terms in (1.1) produce the relative 
velocity between two solitons with different amplitudes [see (3.21)]. 

The second example is the case in which the excitations are given 
externally by the function 

G~( T) = ~g( T) e i~ (4.13) 

where g(T) is a real symmetric function with maxlg(T)] = 1, and ~( ~ 1), fl 
are positive real constants. For a simple case, we consider (4.1) with e = 0. 
In this case, from (4.4) and (4.11), we have a two-dimensional map for 
{t/l, o'l} (where 0l+ ~ = 0t = const is chosen to be zero) 

E ; ] t / l+l=t/z l+~cos ( /3 -~ r t )  g(T) secht/tTdT e -zr~z (4.14) 
- - c ~ o  

and at is given in (4.8). This map is similar to the one given in Ref. 13, and 
depending on the control parameters e and /~, it has many interesting 
properties, such as, fixed point, regular, and strange attractors. (See also 
the paper given by McLaughlin in this proceedings.) 

822/39/5-6-H 
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These models of the periodic excitations have been studied numerically 
in the case of (4.1) with e = 0. ~3-5) The results showed that the shape of the 
soliton remains amazingly persistent even for the distance 
Z~-NAZ~-O(F -2) [-the distance considered in this paper is of O(F 1)] 
(N is the number of amplifications). In this scale of distance, the radiation 
which is considered as an order/-2 plays an important role to maintain the 
structure of the soliton,/4) that is, one cannot reduce the infinite-dimen- 
sional map (4.7) to the map consisting of the soliton parameter only (4.8). 
(An analytical study of the radiation effects to the soliton at the second 
order still needs to be carried out.) 

As a final remark, recently Hasegawa proposed another amplification 
process by use of the stimulated Raman process where the fiber loss can be 
suppressed by the pump field injected externally ~14). He showed that the 
Raman process gives an adiabatic process of amplification, and the spacing 
of the amplifiers depending on the loss rate can be taken much longer than 
the one in the example of the discrete amplification discussed here. 
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